Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 10815-10828, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37858289

RESUMO

The spliceosome is assembled through a step-wise process of binding and release of its components to and from the pre-mRNA. The remodeling process is facilitated by eight DExD/H-box RNA helicases, some of which have also been implicated in splicing fidelity control. In this study, we unveil a contrasting role for the prototypic splicing proofreader, Prp16, in promoting the utilization of aberrant 5' splice sites and mutated branchpoints. Prp16 is not essential for the branching reaction in wild-type pre-mRNA. However, when a mutation is present at the 5' splice site or if Cwc24 is absent, Prp16 facilitates the reaction and encourages aberrant 5' splice site usage independently of ATP. Prp16 also promotes the utilization of mutated branchpoints while preventing the use of nearby cryptic branch sites. Our study demonstrates that Prp16 can either enhance or impede the utilization of faulty splice sites by stabilizing or destabilizing interactions with other splicing components. Thus, Prp16 exerts dual roles in 5' splice site and branch site selection, via ATP-dependent and ATP-independent activities. Furthermore, we provide evidence that these functions of Prp16 are mediated through the step-one factor Cwc25.


The DExD/H-box protein Prp16 has a well-established role in proofreading the 5' splice site and the branch site of precursor mRNA through ATP hydrolysis to ensure the accuracy of the splicing process. Our research has unveiled an unexpected facet of Prp16's function, as it also promotes aberrant selection of the 5' splice site and the branch site through an ATP-independent activity. Prp16 accomplishes these contrasting functions by interacting with the step-one factor Cwc25. It can stabilize Cwc25 to enhance the branching reaction independently of ATP, or destabilize Cwc25 to inhibit the reaction through its ATPase activity. Prp16 exerts dual roles in splice site selection, employing ATP-dependent and ATP-independent mechanisms to regulate splicing fidelity.


Assuntos
Precursores de RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
2.
Nucleic Acids Res ; 47(2): 899-910, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30395327

RESUMO

The spliceosome is assembled via sequential interactions of pre-mRNA with five small nuclear RNAs and many proteins. Recent determination of cryo-EM structures for several spliceosomal complexes has provided deep insights into interactions between spliceosomal components and structural changes of the spliceosome between steps, but information on how the proteins interact with pre-mRNA to mediate the reaction is scarce. By systematic analysis of proteins interacting with the splice sites (SSs), we have identified many previously unknown interactions of spliceosomal components with the pre-mRNA. Prp8 directly binds over the 5'SS and the branch site (BS) for the first catalytic step, and the 5'SS and 3'SS for the second step. Switching the Prp8 interaction from the BS to the 3'SS requires Slu7, which interacts dynamically with pre-mRNA first, and then interacts stably with the 3'-exon after Prp16-mediated spliceosome remodeling. Our results suggest that Prp8 plays a key role in positioning the 5'SS and 3'SS, facilitated by Slu7 through interactions with Prp8 and substrate RNA to advance exon ligation. We also provide evidence that Prp16 first docks on the intron 3' tail, then translocates in the 3' to 5' direction on remodeling the spliceosome.


Assuntos
Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Sítios de Ligação , Biocatálise , Éxons , Proteínas Fúngicas/metabolismo , Íntrons , Modelos Genéticos , Sítios de Splice de RNA , Spliceossomos/metabolismo
3.
RNA ; 23(4): 546-556, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057857

RESUMO

Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.


Assuntos
Adenosina Trifosfatases/genética , Regulação Fúngica da Expressão Gênica , RNA Helicases/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Hidrólise , Modelos Biológicos , Conformação Proteica , RNA Helicases/metabolismo , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos , Termodinâmica
4.
Mol Cell Biol ; 37(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27994011

RESUMO

Cwc24 is an essential splicing factor but only transiently associates with the spliceosome, with an unknown function. The protein contains a RING finger and a zinc finger domain in the carboxyl terminus. The human ortholog of Cwc24, RNF113A, has been associated with the disorder trichothiodystrophy. Here, we show that the zinc finger domain is essential for Cwc24 function, while the RING finger domain is dispensable. Cwc24 binds to the spliceosome after the Prp19-associated complex and is released upon Prp2 action. Cwc24 is not required for Prp2-mediated remodeling of the spliceosome, but the spliceosome becomes inactive if remodeling occurs before the addition of Cwc24. Cwc24 binds directly to pre-mRNA at the 5' splice site, spanning the splice junction. In the absence of Cwc24, U5 and U6 modes of interaction with the 5' splice site are altered, and splicing is very inefficient, with aberrant cleavage at the 5' splice site. Our data suggest roles for Cwc24 in orchestrating organization of the spliceosome into an active configuration prior to Prp2-mediated spliceosome remodeling and in promoting specific interaction of U5 and U6 with the 5' splice site for fidelity of 5' splice site selection.


Assuntos
Biocatálise , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , Splicing de RNA/genética , Sequência de Bases , Reagentes de Ligações Cruzadas/metabolismo , Ligação Proteica , Domínios Proteicos , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Relação Estrutura-Atividade
5.
Mol Cell Biol ; 34(2): 210-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190974

RESUMO

The yeast Sad1 protein was previously identified in a screen for factors involved in the assembly of the U4/U6 di-snRNP particle. Sad1 is required for pre-mRNA splicing both in vivo and in vitro, and its human orthologue has been shown to associate with U4/U6.U5 tri-snRNP. We show here that Sad1 plays a role in maintaining a functional form of the tri-snRNP by promoting the association of U5 snRNP with U4/U6 di-snRNP. In the absence of Sad1, the U4/U6.U5 tri-snRNP dissociates into U5 and U4/U6 upon ATP hydrolysis and cannot bind to the spliceosome. The separated U4/U6 and U5 can reassociate upon incubation more favorably in the absence of ATP and in the presence of Sad1. Brr2 is responsible for mediating ATP-dependent dissociation of the tri-snRNP. Our results demonstrate a role of Sad1 in maintaining the integrity of the tri-snRNP by counteracting Brr2-mediated dissociation of tri-snRNP and provide insights into homeostasis of the tri-snRNP.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , RNA Helicases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/fisiologia , Proteínas de Ciclo Celular/química , Quinase do Ponto de Checagem 2/química , Homeostase , Domínios e Motivos de Interação entre Proteínas , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
6.
Mol Cell Biol ; 33(3): 514-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23166295

RESUMO

The DEAH-box ATPase Prp43 is required for disassembly of the spliceosome after the completion of splicing or after the discard of the spliceosome due to a splicing defect. Prp43 associates with Ntr1 and Ntr2 to form the NTR complex and is recruited to the spliceosome via the interaction of Ntr2 and U5 component Brr2. Ntr2 alone can bind to U5 and to the spliceosome. To understand how NTR might mediate the disassembly of spliceosome intermediates, we arrested the spliceosome at various stages of the assembly pathway and assessed its susceptibility to disassembly. We found that NTR could catalyze the disassembly of affinity-purified spliceosomes arrested specifically after the ATP-dependent action of DEAH-box ATPase Prp2, Prp16, or Prp22 but not at steps before the action of these ATPases or upon their binding to the spliceosome. These results link spliceosome disassembly to the functioning of splicing ATPases. Analysis of the binding of Ntr2 to each splicing complex has revealed that the presence of Prp16 and Slu7, which also interact with Brr2, has a negative impact on Ntr2 binding. Our study provides insights into the mechanism by which NTR can be recruited to the spliceosome to mediate the disassembly of spliceosome intermediates when the spliceosome pathway is retarded, while disassembly is prevented in normal reactions.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Ligação Proteica , Fatores de Processamento de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo
7.
J Virol ; 86(12): 6677-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496232

RESUMO

Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin ß1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin ß1 in lipid rafts on the cell surface, and the knockdown of integrin ß1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin ß1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin ß1-dependent manner, suggesting that integrin ß1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin ß1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.


Assuntos
Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vaccinia virus/fisiologia , Vacínia/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Humanos , Integrina beta1/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vacínia/enzimologia , Vacínia/genética , Vacínia/virologia , Vaccinia virus/genética
8.
J Virol ; 86(9): 4868-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345471

RESUMO

Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.


Assuntos
Endocitose , Proteína-1 Reguladora de Fusão/metabolismo , Vaccinia virus/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Transporte Biológico , Linhagem Celular , Endocitose/genética , Proteína-1 Reguladora de Fusão/genética , Inativação Gênica , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Fusão de Membrana , Microdomínios da Membrana/metabolismo , Camundongos , Vírion/metabolismo , Internalização do Vírus
9.
Mol Cell Biol ; 31(1): 43-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956557

RESUMO

Cwc22 was previously identified to associate with the pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex [NTC]) involved in spliceosome activation. We show here that Cwc22 is required for pre-mRNA splicing both in vivo and in vitro but is neither tightly associated with the NTC nor required for spliceosome activation. Cwc22 is associated with the spliceosome prior to catalytic steps and remains associated throughout the reaction. The stable association of Cwc22 with the spliceosome requires the presence of the NTC but is independent of Prp2. Although Cwc22 is not required for the recruitment of Prp2 to the spliceosome, it is essential for the function of Prp2 in promoting the release of the U2 components SF3a and SF3b. In the absence of Cwc22, Prp2 can bind to the spliceosome but is dissociated upon ATP hydrolysis without promoting the release of SF3a/b. Thus, Cwc22 represents a novel ATP-dependent step one factor besides Prp2 and Spp2 and has a distinct role from that of Spp2 in mediating the function of Prp2.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA Fúngico/genética , Genes Fúngicos , Modelos Biológicos , Dados de Sequência Molecular , Splicing de RNA , Fatores de Processamento de RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
10.
J Virol ; 83(13): 6464-76, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19369327

RESUMO

Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.


Assuntos
Proteínas de Transporte/metabolismo , Fusão Celular , Dissulfetos/metabolismo , Glicosaminoglicanos/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais de Fusão/metabolismo , Linhagem Celular , Cisteína/metabolismo , Humanos , Proteínas de Membrana , Mutagênese Sítio-Dirigida , Ligação Proteica
11.
J Virol ; 80(5): 2127-40, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16474121

RESUMO

Vaccinia virus is a large enveloped poxvirus with more than 200 genes in its genome. Although many poxvirus genomes have been sequenced, knowledge of the host and viral protein components of the virions remains incomplete. In this study, we used gel-free liquid chromatography and tandem mass spectroscopy to identify the viral and host proteins in purified vaccinia intracellular mature virions (IMV). Analysis of the proteins in the IMV showed that it contains 75 viral proteins, including structural proteins, enzymes, transcription factors, and predicted viral proteins not known to be expressed or present in the IMV. We also determined the relative abundances of the individual protein components in the IMV. Finally, 23 IMV-associated host proteins were also identified. This study provides the first comprehensive structural analysis of the infectious vaccinia virus IMV.


Assuntos
Proteínas/análise , Proteoma/análise , Vaccinia virus/química , Proteínas Virais/análise , Vírion/química , Sequência de Aminoácidos , Cromatografia Líquida , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular
12.
J Mol Biol ; 349(5): 1060-71, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15913650

RESUMO

The soluble domain of the self-assembly vaccinia virus envelope protein A27L, sA27L-aa, consists of a flexible extended coil at the N terminus and a rigid hydrophobic coiled-coil region at the C terminus. In the former, a basic strip of 12 residues is responsible for binding to cell-surface heparan sulfates. Although the latter is believed to mediate self-assembly, its biological role is unclear. However, an in vitro bioassay showed that peptides comprising the 12 residue basic region alone failed to interact with heparin, suggesting that the C-terminal coiled-coil region might serve an indispensable role in biological function. To explore this structural and functional relationship, we performed site-specific mutagenesis in an attempt to specifically disrupt the hydrophobic core of the coiled coil. Three single mutants, L47A, L51A, and L54A, and one triple mutant, L47,51,54A, were expressed and purified from Escherichia coli. The physical properties of the mutants were carefully examined by gel-filtration chromatography, CD, and NMR spectroscopy, and the biological activities were assessed by an in vitro SPR bioassay and three in vivo bioassays: binding to cells, blocking virus infection and blocking cell fusion. We showed that the L47A mutant, which is similar to the parental sA27L-aa in forming a hexamer, is biologically active. L51A and L54A mutants form tetramers and are less active. Notably, in the triple mutant, the self-assembly hydrophobic core structure is uncoiled; as a consequence, the tetrameric structure is biologically inactive. Thus, we conclude that the leucine residues, in particular Leu51 and Leu54, sustain the hydrophobic core structure that is essential for the biological function of vaccinia virus envelope protein A27L, binding to cell-surface heparan sulfate.


Assuntos
Membrana Celular/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Vaccinia virus/fisiologia , Proteínas do Envelope Viral/metabolismo , Fusão Celular , Membrana Celular/virologia , Dicroísmo Circular , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral
13.
J Virol ; 79(3): 1623-34, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15650188

RESUMO

Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Vaccinia virus/patogenicidade , Proteínas do Envelope Viral/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Células HeLa , Humanos , Fusão de Membrana , Vaccinia virus/genética , beta-Ciclodextrinas/farmacologia
14.
Virology ; 329(1): 199-212, 2004 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-15476887

RESUMO

Host restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells. Both viruses could enter cells, initiate viral DNA replication and intermediate gene transcription. However, translation of viral intermediate gene was only detected in cells infected with VV-36hr, indicating that CP77 relieves host restriction at the intermediate gene translation stage in HeLa cells. Caspase-2 and -3 activation was observed in HeLa cells infected with VV-hr coupled with dramatic morphological alterations and cleavage of the translation initiation factor eIF4G. Caspase activation was reduced in HeLa cells infected with VV-36hr, indicating that CP77 acts upstream of caspase activation. Enhanced phosphorylation of PKR and eIF2alpha was also observed in cells infected with VV-hr and was suppressed by CP77. Suppression of eIF4G cleavage with the caspase inhibitor ZVAD did not rescue virus translation, whereas expression of a mutant eIF2alpha protein with an alanine substitution of serine at amino acid position 51 (eIF2alphaS51A) partially restored viral translation and moderately increased virus growth in HeLa cells.


Assuntos
Vírus da Varíola Bovina/patogenicidade , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Viral da Expressão Gênica , Biossíntese de Proteínas , Vaccinia virus/metabolismo , Proteínas Virais/genética , Animais , Apoptose , Células CHO , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Cricetinae , Células HeLa , Humanos , Mutação , Fosforilação , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo
15.
J Virol ; 77(10): 5877-88, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12719581

RESUMO

Subversion or appropriation of cellular signal transduction pathways is a common strategy employed by viruses to promote an environment within infected cells that supports the viral replicative cycle. Using subsets of 3T3 murine fibroblasts previously shown to differ in their ability to support myxoma virus (MV) replication, we investigated the role of host serine-threonine kinases (STKs) as potential mediators of the permissive phenotype. Both permissive and nonpermissive 3T3 cells supported equivalent levels of virion binding, entry, and early virus gene expression, indicating that MV tropism in 3T3 cells was not determined by receptor-mediated entry. In contrast, late virus gene expression and viral DNA replication were selectively compromised in restrictive 3T3 cells. Addition of specific protein kinase inhibitors, many of which shared the ability to influence the activity of the STKs p21-activated kinase 1 (PAK-1) and Raf-1 attenuated MV replication in permissive 3T3 cells. Western blot detection of the phosphorylated forms of PAK-1 (Thr423) and Raf-1 (Ser338) confirmed activation of these kinases in permissive cells after MV infection or gamma interferon treatment, but the activated forms of both kinases were greatly reduced or absent in restrictive 3T3 cells. The biological significance of these activations was demonstrated by using the autoinhibitory domain of PAK-1 (amino acids 83 to 149), expression of which reduced the efficiency of MV infection in permissive 3T3 cells concurrent with a decrease in PAK-1 activation. In comparison, overexpression of a constitutively active PAK-1 (T423E) mutant increased MV replication in restrictive 3T3 cells. These observations suggest that induced signaling via cellular STKs may play important roles in determining the permissiveness of host cells to poxvirus infection.


Assuntos
Myxoma virus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Replicação Viral , Células 3T3 , Animais , Linhagem Celular , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Camundongos , Myxoma virus/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Virulência , Quinases Ativadas por p21
16.
J Virol ; 76(3): 1379-90, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11773412

RESUMO

Molecular chaperones assist protein folding, and some chaperones are induced by heat, nutrient depletion, or pathogen invasion. This study investigates the role played by Hsp90 in the life cycle of vaccinia virus. The titer of vaccinia intracellular mature virions (IMV) was reduced by 2 orders of magnitude in RK13 cells treated with geldanamycin (GA), which blocks the ATPase activity of Hsp90. GA does not affect expression from the viral early promoter, but treatment with GA delays DNA replication and intermediate gene transcription and reduces expression from the viral late promoter. Vaccinia virus infection does not induce Hsp90 expression; however, intracellular distribution of Hsp90 is altered in virus-infected cells. Hsp90 is restricted to the cytoplasm of mock-infected cells; in contrast, Hsp90 is transiently associated with virosomes in virus-infected cells although it is not incorporated into IMV. In addition, Hsp90 interacts with viral core protein 4a, the mature form of the A10L gene product, in virus-infected cells. In conclusion, these results suggest that a cellular chaperone protein, Hsp90, is important for vaccinia virus growth in cultured cells and that viral core protein 4a associates with Hsp90-containing complexes in the infected cells.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Vaccinia virus/crescimento & desenvolvimento , Adenosina Trifosfatases/antagonistas & inibidores , Benzoquinonas , Células Cultivadas , DNA Viral/biossíntese , Inibidores Enzimáticos/farmacologia , Genes Virais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Lactamas Macrocíclicas , Quinonas/farmacologia , Frações Subcelulares , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética , Proteínas do Core Viral/metabolismo , Virossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...